Combining structured and unstructured data for predictive models: a deep learning approach
نویسندگان
چکیده
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولCombining Structured and Unstructured Data for Web Application Performance Analysis
System performance analysis is typically conducted by collecting structured data in the form of metrics or by examining unstructured data in the form of logs. Tools currently available either analyze the structured data or the unstructured data, but not both. In some settings, this is not enough to make meaningful statements about the performance of the system. In this work, we explore alternat...
متن کاملLearning Deep Structured Models
Many problems in real-world applications involve predicting several random variables that are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such dependencies. The goal of this paper is to combine MRFs with deep learning to estimate complex representations while taking into account the dependencies between the output random variables. Towards this goa...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Informatics and Decision Making
سال: 2020
ISSN: 1472-6947
DOI: 10.1186/s12911-020-01297-6